Đề KSNL Toán 7 năm 2022 – 2023 Thái Thụy – Thái Bình

Đề KSNL Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Thụy – Thái Bình

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát năng lực học sinh môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thái Thụy, tỉnh Thái Bình.

Trích dẫn Đề KSNL Toán 7 năm 2022 – 2023 phòng GD&ĐT Thái Thụy – Thái Bình:
+ Trong kì khảo sát năng lực học sinh môn Toán của huyện A, ba khối 6, 7, 8 có tất cả 458 học sinh đăng kí tham gia. Khi khảo sát, khối 6 giảm đi 5 học sinh, khối 7 giữ nguyên, khối 8 giảm đi 3 học sinh nên số học sinh tham gia khảo sát của khối 6, 7, 8 lần lượt tỉ lệ với 6; 5; 4. Tính số học sinh mỗi khối đăng kí tham gia khảo sát.
+ Cho biểu thức E với a là số nguyên. Tìm giá trị nguyên nhỏ nhất của E.
+ Cho tam giác ABC vuông tại A và AB = AC. Tia phân giác của góc B cắt cạnh AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Từ A kẻ đường thẳng vuông góc với BD tại K và cắt cạnh BC ở H. Từ E kẻ đường thẳng vuông góc với BD tại I và cắt cạnh BC ở G. Đường thẳng EG cắt đường thẳng AC tại Q. 1. Chứng minh AEQ = ADB và ABD = AQE. 2. Chứng minh A là trung điểm của QC và tam giác QBC vuông cân. 3. Chứng minh DH vuông góc với BC. 4. Chứng minh GB = GD.

HSG Toán 7 Triệu Sơn Thanh Hóa 2022 – 2023

HSG Toán 7 Huyện Tân Kì 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề Kiểm Định HSG Toán 7 năm 2022 – 2023 Triệu Sơn – Thanh Hóa

Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2023.

Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa:
+ Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2.
+ Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB.
+ Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.

Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa:
+ Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2.
+ Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB.
+ Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.

HSG Toán 7 Triệu Sơn Thanh Hóa 2022 – 2023

HSG Toán 7 Huyện Tân Kì 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG Toán 7 năm 2022 – 2023 Triệu Sơn – Thanh Hóa

Đề kiểm định HSG Toán 7 năm 2022 – 2023  Triệu Sơn – Thanh Hóa

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 16 tháng 03 năm 2023.

Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa:
+ Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2.
+ Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB.
+ Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.

Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Triệu Sơn – Thanh Hóa:
+ Cho tam giác ABC có AB < AC. Gọi M là trung điểm của BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc BAC tại N và cắt tia AB tại E, cắt tia AC tại F. a. Chứng minh rằng ANE = ANF. b. Chứng minh rằng AE = (AB + AC)/2.
+ Cho ABC có ABC = 45°, ACB = 120°. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính ADB.
+ Cho a, b, c là các số thực thỏa mãn a + b + c ≤ 2. Tìm giá trị nhỏ nhất của biểu thức P = 2023ca – ab – bc.

HSG Toán 7 Huyện Tân Kì 2022 – 2023

HSG Toán 7 Huyện Diễn Châu 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề kiểm định HSG Toán 7 năm 2022 – 2023 Tân Kỳ

Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề kiểm định chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Tân Kỳ, tỉnh Nghệ An.

Trích dẫn Đề kiểm định HSG Toán 7 năm 2022 – 2023 phòng GD&ĐT Tân Kỳ – Nghệ An:
+ Tìm giá trị nhỏ nhất của biểu thức A = |2x − 4| + |2x − 6| + |2x − 8|.
+ Ba hộp đựng trứng gà có tất cả 710 quả. Sau khi bán 1/5 số trứng ở hộp thứ nhất, 1/6 số trứng ở hộp thứ hai và 1/11 số trứng ở hộp thứ ba thì số trứng còn lại ở ba hộp bằng nhau. Hỏi lúc đầu mỗi hộp đựng bao nhiêu quả trứng?
+ Cho tam giác nhọn ABC có các trung tuyến BD và CE cắt nhau tại G. Trên tia đối của tia DB lấy điểm M sao cho DB = DM. Trên tia đối của tia EC lấy điểm N sao cho EN = EC. Chứng minh rằng: a) ADM = CDB và ba điểm M, A, N thẳng hàng. b) BM + CN > 3BC. c) Các đường thẳng AG, NB, MC đồng quy.

HSG Toán 7 Huyện Diễn Châu 2022 – 2023

HSG Toán 7 Huyện Thạch Thành 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG Toán 7 vòng 1 năm 2022 – 2023 huyện Diễn Châu

Đề HSG Toán 7 vòng 1 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 cấp trường vòng 1 năm học 2022 – 2023 cụm thi liên trường THCS trực thuộc phòng Giáo dục và Đào tạo huyện Diễn Châu, tỉnh Nghệ An; đề thi có đáp án, lời giải chi tiết và thang chấm điểm.

Trích dẫn Đề HSG Toán 7 vòng 1 năm 2022 – 2023 liên trường THCS huyện Diễn Châu – Nghệ An:
+ Cho p là số nguyên tố lớn hơn 3, biết p + 2 cũng là số nguyên tố. Chứng tỏ rằng p + 1 chia hết cho 6. Tìm số nguyên x để biểu thức sau đạt giá trị lớn nhất, tìm giá trị lớn nhất đó: 1 2 2 x P x. Một trường THCS có ba lớp 7, tổng số học sinh hai lớp 7A, 7B là 85 em. Nếu chuyển 10 học sinh từ lớp 7A sang lớp 7C thì số học sinh ba lớp 7A, 7B, 7C tỉ lệ thuận với 7; 8; 9. Hỏi lúc đầu mỗi lớp có bao nhiêu học sinh?
+ Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. Chứng minh rằng: a) BM = CN. b) BC < MN. c) Đường thẳng vuông góc với MN tại giao điểm của MN và BC luôn luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
+ Cho tam giác ABC có góc B bằng 450, góc C bằng 1200. Trên tia đối của tia CB lấy điểm D sao cho CD = 2CB. Tính góc ADB.

HSG Toán 7 Huyện Thạch Thành 2022 – 2023

HSG Toán 7 Huyện Lương Tài 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG huyện Toán 7 năm 2022 – 2023 Thạch Thành

Đề HSG huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Thạch Thành – Thanh Hóa

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thạch Thành, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 14 tháng 03 năm 2023.

Trích dẫn Đề HSG huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Thạch Thành – Thanh Hóa:
+ Cho các số a, b, c, x, y, z thỏa mãn a + b + c = a2 + b2 + c2 = 1 và x/a = y/b = z/c (các tỉ số đều có nghĩa). Chứng minh rằng x2 + y2 + z2 = (x + y + z)2.
+ Một bản thảo cuốn sách dày 555 trang được giao cho 3 người đánh máy. Để đánh máy một trang người thứ nhất cần 5 phút, người thứ hai cần 4 phút, người thứ 3 cần 6 phút. Hỏi mỗi người đánh máy được bao nhiêu trang bản thảo, biết rằng cả 3 người cùng nhau làm từ đầu đến khi đánh máy xong.
+ Cho điểm M thuộc đoạn thẳng AB (MA > MB). Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F thứ tự là trung điểm của AD, BC. Gọi K là giao điểm AD và BC. Chứng minh rằng: 1) AD = BC. 2) AEM = CFM, từ đó suy ra MEF là tam giác đều.

HSG Toán 7 Huyện Lương Tài 2022 – 2023

HSG Toán 7 Huyện Lục Ngạn 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG cấp huyện Toán 7 năm 2022 – 2023 Lương Tài

Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023.

Trích dẫn đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lương Tài – Bắc Ninh:
+ Nhà trường thành lập 3 nhóm học sinh khối 7 tham gia chăm sóc di tích lịch sử. Trong đó 2/3 số học sinh của nhóm I bằng 8/11 số học sinh của nhóm II và bằng 4/5 số học sinh nhóm III. Biết rằng số học sinh của nhóm I ít hơn tổng số học sinh của nhóm II và nhóm III là 18 học sinh. Tính số học sinh của mỗi nhóm.
+ Biết a + 1 và 2a + 1 đồng thời là các số chính phương. Chứng minh rằng a chia hết cho 12. Tìm các số tự nhiên a; b thỏa mãn (20a + 7b + 3).(20a + 20a + b) = 803.
+ Cho tam giác ABC vuông cân tại A. Vẽ các tia Bx, Cy vuông góc với BC nằm trên nửa mặt phẳng bờ BC chứa điểm A. Gọi D là một điểm nằm giữa B và C. Đường thẳng vuông góc với AD tại A cắt Bx và Cy theo thứ tự tại E và F. 1) Chứng minh AEB = ADC; 2) Chứng minh tam giác EDF vuông cân; 3) Xác định vị trí điểm D trên BC để EF có độ dài nhỏ nhất.

HSG Toán 7 Huyện Lục Ngạn 2022 – 2023

HSG Toán 7 Huyện Lập Thạch 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG Toán 7 năm 2022 – 2023 Lục Ngạn – Bắc Giang

Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lục Ngạn – Bắc Giang

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi văn hóa cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lục Ngạn, tỉnh Bắc Giang; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023.

Trích dẫn đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lục Ngạn – Bắc Giang:
+ Địa y là một dạng kết hợp giữa nấm (mycobiont) và một loại sinh vật có thể quang hợp (photobiont hay phycobiont) trong một mối quan hệ cộng sinh. Khi trái đất nóng dần lên làm cho băng trên các dòng sông bị đóng băng tan dần. Mười hai năm sau khi băng tan, Địa y bắt đầu phát triển và nếu mỗi nhóm Địa y phát triển trên một khoảng đất hình tròn thì mối quan hệ giữa đường kính d (tính bằng mi-li-mét) của hình tròn đó và tuổi r của Địa y có thể biểu diễn tương đối theo công thức: d = 7t − 12 (với t ≥ 12). Năm 2022, người ta đã đo được đường kính của một nhóm Địa y cạnh một dòng sông là 42mm. Với kết quả đo trên, em hãy tính xem băng trên dòng sông đó đã tan vào năm nào?
+ Cho tam giác MNP vuông cân ở M, A là trung điểm của NP. Điểm B nằm giữa hai điểm A và P. Kẻ NH và PK vuông góc với MB lần lượt tại H và K. a) Chứng minh: HMN = KPM. b) Chứng minh MAP là tam giác cân và AH vuông góc AK.
+ Một bể cá hình hộp chữ nhật có chiều dài 60cm, chiều rộng 25cm và chiều cao 50 cm. Để nuôi cá, người ta đổ 45 lít nước và một tiểu cảnh bằng đá vào bể. Biết khi đó chiều cao mực nước trong bề là 34 cm. Hãy tính thể tích của tiểu cảnh đó.

HSG Toán 7 Huyện Lập Thạch 2022 – 2023

HSG Toán 7 Tỉnh Ninh Bình 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề HSG cấp huyện Toán 7 năm 2022 – 2023 Lập Thạch

Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát học sinh giỏi cấp huyện môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc; đề thi hình thức tự luận với 09 bài toán, thời gian làm bài 120 phút.

Trích dẫn Đề HSG cấp huyện Toán 7 năm 2022 – 2023 phòng GD&ĐT Lập Thạch – Vĩnh Phúc:
+ Tìm các số nguyên tố p sao cho 2^p + p^2 là một số nguyên tố.
+ Cho tam giác ABC vuông cân tại A. Gọi M là trung điểm BC, D là điểm thuộc đoạn BM (D khác B và M). Kẻ các đường thẳng BH, CI lần lượt vuông góc với đường thẳng AD tại H và I. Chứng minh rằng: a) BAM = ACM và BH = AI. b) Tam giác MHI vuông cân.
+ Cho tam giác ABC cân tại A, có A = 100° và I là giao điểm các đường phân giác trong của tam giác ABC. Trên tia BA lấy điểm D sao cho BD = BC. Đường thẳng BI cắt AC tại E, DE cắt BC tại F. Chứng minh rằng: FB = FD.

HSG Toán 7 Tỉnh Ninh Bình 2022 – 2023

HSG Toán 7 Tỉnh Quảng Ninh 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY

Đề học sinh giỏi Toán 7 năm 2022 – 2023 Ninh Bình

Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình

Tham gia group học tập toán
Ôn Thi Chuyên Toán Free
Luyện thi vào 10 free

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi môn Toán 7 THCS năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Ninh Bình, tỉnh Ninh Bình; đề thi hình thức tự luận với 06 bài toán, thời gian làm bài 150 phút.

Trích dẫn Đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT thành phố Ninh Bình:
+ Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5m/s, trên cạnh thứ ba với vận tốc 4m/s, trên cạnh thứ tư với vận tốc 3m/s. Tính độ dài cạnh của hình vuông, biết rằng tổng thời gian vật chuyển động trên bốn cạnh là 59 giây.
+ Cho tam giác ABC vuông tại A, K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a) Chứng minh: CD // AB. b) Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c) Chứng minh: HMN cân. Cho tam giác ABC có góc A tù. Kẻ AD vuông góc AB và AD = AB (tia AD nằm giữa hai tia AB và AC). Kẽ AE vuông góc AC và AE = AC (tia AE nằm giữa hai tia AB và AC). Gọi M là trung điểm của BC. Chứng minh rằng: AM vuông góc DE.
+ Cho 5 số dương đôi một khác nhau sao cho mỗi số không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong 5 số đó tồn tại hai số mà tích của chúng là một số chính phương.

HSG Toán 7 Tỉnh Quảng Ninh 2022 – 2023

HSG Toán 7 Huyện Đông Hưng 2022 – 2023

Tải File word tại đây
NGỌC HIẾN ACADEMY